Abstract

ABSTRACTWe have clarified a new leakage mechanism in Co salicide process for the ultra-shallow junctions of 0.1-um CMOS devices and revealed the optimum Co salicide process conditions for minimizing the leakage current. We found that leakage currents generate from many localized points that are randomly distributed in the junction area, and not from the junction edge. We successfully verified our localized leakage model using Monte Carlo simulation. We identified abnormal CoSix spiking growth under the Co silicide film, as being the origin of the localized leakage current. These CoSix spikes grow rapidly only during annealing between 400°C and 450°C when Co2Si phase is formed. These spikes never grow during annealing at over 500°C, and decrease with high temperature annealing over 500°C. A minimum leakage current can be achieved by optimized annealing at between 800°C and 850°C for 30 sec. This is because a trade-off between reducing the CoSix spikes and preventing the Co atom diffusion from Co silicide film to Si substrate, which begins at annealing above 900°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.