Abstract

AbstractSix stationary points of alaninamide have been located on the potential surface energy (PES) at the B3LYP/6‐311++G(2d,2p) level of theory both in the gas phase and in aqueous solution. In the aqueous solution, to take the water solvent effect into account, the polarizable continuum model (PCM) method has been used. Accurate geometric structures and their relative stabilities have been investigated. The results show that the intramolecular hydrogen bond plays a very important role in stabilizing the global minimum of the alaninamide. Moreover, the consistent result in relative energy using high‐level computations, including the MP2 and MP3 methods with the same basis set [6‐311++G(2d,2p)], indicates that the B3LYP/6‐311++G(d,p) level may be applied to the analogue system. More importantly, the optical rotation of the optimized conformers (both in the gas phase and in aqueous solution) of alaninamide have been calculated using the density functional theory (DFT) and Hartree–Fock (HF) method at various basis sets (6‐31+G*, 6‐311++G(d,p), 6‐311++G(2d,2p) and aug‐cc‐pvdz). The results show that the selection of the computation method and the basis set in calculation has great influence on the results of the optical rotations. The reliability of the HF method is less than that of DFT, and selecting the basis set of 6‐311++G(2d,2p) and aug‐cc‐pvDZ produces relative reliable results. Analysis of the computational results of the structure parameters and the optical rotations yields the conclusion that just the helixes in molecules caused the chiral molecules to be optical active. The Boltzmann equilibrium distributions for the six conformers (both in the gas phase and in the aqueous solution) are also carried out. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.