Abstract
Interface fracture of woven fabric composite layers was studied using Mode II fracture testing. Both carbon fiber and E-glass fiber composites were used with a vinyl ester resin. First, the single-step cured (i.e., co-cured) composite interface strength was compared to that of the two-step cured interface as used in the scarf joint technique. The results showed that the two-step cured interface was as strong as the co-cured interface. Carbon nanotubes were then applied to the composite interface using two-step curing, and then followed by Mode II fracture testing. The results indicated a significant improvement of the interface fracture toughness due to the dispersed carbon nanotube layer for both carbon fiber and E-glass fiber composites. The carbon nanotube layer was then evaluated as a means to monitor crack growth along the interface. Because carbon nanotubes have very high electrical conductivity, the electrical resistance was measured through the interface as a crack grew, thus disrupting the carbon nanotube network and increasing the resistance. The results showed a linear relationship between crack length and interface resistance for the carbon fiber composites, and allowed initial detection of failure in the E-glass fiber composites. This study demonstrated that the application of carbon nanotubes along a critical composite interface not only improves fracture properties but can also be used to detect and monitor interfacial damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.