Abstract

Nowadays, the demand for high-quality multimedia services (video, audio, image, and data) is rapidly increasing. The Digital Video Broadcasting - terrestrial (DVB-T) standard, its second-generation version (DVB-T2), and the Long-Term Evolution (LTE) standard are the most promising systems to fulfill the demand for advanced multimedia services (e.g., high-definition image and video quality), especially in Europe. However, LTE mobile services can operate in a part of the UHF band allocated to DVB-T/T2 TV services previously. The main purpose of this work is to explore the possible coexistences of DVB-T2-Lite and LTE systems in the same shared frequency band (co-channel coexistence) under outdoor-to-indoor and indoor reception conditions. Furthermore, an applicable method for evaluating coexistence scenarios between both systems is shown with a particular example. These coexistence scenarios can be noncritical and critical. In the first case, both systems can coexist without significant performance degradation. In the second one, a partial or full loss of DVB-T2-Lite and/or LTE signals can occur. We consider an indoor LTE femtocell and outdoor-to-indoor DVB-T2-Lite signal reception in a frequency band from 791 up to 821 MHz. Simulations of combined indoor and outdoor signal propagation are performed in MATLAB using 3rd Generation Partnership Project (3GPP) channel models, separately for both DVB-T2-Lite and LTE systems. Correctness of path loss simulation results is verified by measurements. Afterwards, an appropriate linear model is proposed which enables to evaluate the impact of coexistence on performance of both systems in outdoor-to-indoor and indoor-to-indoor reception scenarios. The results are related to an actual location in the building and are presented in floor plans. The floor plans include different coexistence conditions (different power imbalance and different amount of overlay of the radio channels). Service availability of both systems is verified again by measurements. The resulting maps help better understand the effect of coexistence on achievable system performance under different indoor/outdoor reception situations considering real transmission conditions.

Highlights

  • Advanced wireless communication systems can provide users with any type of multimedia

  • 5.1 Parameters to evaluate the performance of DVB-T2Lite and Long-Term Evolution (LTE) Before evaluating and discussing the obtained results, it is necessary to briefly define the most important measured parameters which were used to evaluate the performance of T2-Lite and LTE systems

  • Quasi Error-Free (QEF) is a minimal limit defined in the DVB-T2-Lite standard for achieving video service availability without noticeable errors in the video

Read more

Summary

Introduction

Advanced wireless communication systems can provide users with any type of multimedia. From the viewpoint of service providers, efficient usage of limited resources in the radio frequency (RF) spectrum is one of the biggest challenges. The next-generation digital terrestrial television broadcasting (DVB-T2/T2-Lite) and Long-Term Evolution (LTE) systems will be deployed to provide multimedia services for mobile and portable scenarios, mainly in Europe. DVB-T2-Lite [5,6,7,8] is a new profile which was added to the DVB-T2 system specification in April 2012. This subset within DVB-T2 is very perspective for mobile and portable TV broadcasting as it is designed to support

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.