Abstract

Raman backscattering (RBS) in plasma is an attractive source of intense, ultrashort laser pulses, which has the potential asa basic for a new generation of laser amplifiers.1 Taking advantage of plasma, which can withstand extremely high power densities and can offer high efficiencies over short distances, Raman amplification in plasma could lead to significant reductions in both size and cost of high power laser systems. Chirped laser pulse amplification through RBS could be an effective way to transfer energy from a long pump pulse to a resonant counter propagating short probe pulse. The probe pulse is spectrally broadened in a controlled manner through self-phase modulation. Mechanism of chirped pulse Raman amplification has been studied, and features of supperradiant growth associated with the nonlinear stage are observed in the linear regime. Gain measurements are briefly summarized. The experimental measurements are in qualitative agreement with simulations and theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.