Abstract

The concept of plasma separation of spent nuclear fuel in a plane perpendicular to the magnetic field in an electric potential of special configuration is developed. A specific feature of the proposed approach consists in using an accelerating potential for reducing energy and angular spread of plasma ions at the entrance to the separator chamber and a potential well for the spatial separation of ions with different masses. The trajectories of ions of the substance imitating spent nuclear fuel are calculated. The calculations are performed for azimuthal and axial magnetic fields and model electric field configurations corresponding to different geometries of the separator chamber. It is shown that, using magnetic fields with a characteristic strength of 1 kG and electric potentials of up to 1 kV inside a region with a linear size less than 100 cm, it is possible to separate ions of spent nuclear fuel with energies from 0.2 to 3 eV. The calculations were performed for a collisionless mode in the single-particle approximation. Possible variants of the experimental facility for plasma separation of spent nuclear fuel are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call