Abstract

Hybrid devices based on silicon nanowires (SiNWs) dispersed in a conjugated polymer poly(3-hexylthiophene) P3HT thin films have been realized. The carrier transport mechanism in inorganic/organic hybrid nancocomposites consisting of SiNW dispersed in P3HT layer was investigated by using I–V characteristics and impedance spectroscopy measurements. The conduction mechanism in these hybrid nanocomposites has been identified to be thermionic emission at the interfaces. The electrical parameters of the structure have been investigated by modelization of the I–V characteristics using an electrical equivalent circuit and have been extracted for the different SiNW volume ratios. The barrier height, the series resistance and the shunt resistance values of the diodes have been calculated as about 0.9 eV, several kΩ and several MΩ, respectively. The diode behaves as non-ideal one because of the series resistance and the Donor/Acceptor interface layer. The impedance spectroscopy study, in the frequency range 100 Hz–100 kHz, shows a typical behavior of disordered materials and indicative of a hopping transport in the investigated temperature range. The dc conductivity follows the Arrhenius law with an activation energy transition from 8.4 to 55.8 meV at about 294 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.