Abstract

Rhythmic excitation of a rabbit myelin nerve increased diacylglycerol (DAG) content from 1.53 to 2.17 microg/mg lipids. Inhibition of phosphoinositide-specific phospholipase C decreased DAG content. This suggests involvement of this enzyme in processes accompanying rhythmic excitation. The increase in membrane potential of the nerve fiber (K+-depolarization) was accompanied by increase in DAG and phosphatidylinositol monophosphate and decrease in phosphatidylinositol triphosphate and phosphatidylinositol diphosphate content. Treatment of the nerve with DAG or a protein kinase C activator increased (45)Ca influx by 40%, whereas treatment with an inhibitor of this enzyme, polymyxin, inhibited this parameter by 34%. The role of phosphoinositides and protein kinase C in the regulation of Ca2+ transport during rhythmic excitation of the myelin nerve is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.