Abstract

Ceramic pigments based on Y2O3–Al2O3 system doped by cobalt as a colourant agent were synthesized by solid-state reaction at temperatures up to 1,400 °C. The reactivity of initial mixtures of components was improved by the mineralizer LiF and the mechanical activation in a planetary ball mill. The temperature region of the product formation was followed by the method of thermal analysis. The effect of the synthetic method on the phase composition of the products was studied by X-ray diffraction analysis. Studied pigment-application properties of the product include the measurement of optical properties in the visible region of light and particle size distribution. The simple solid-state reaction led to the formation of turquoise samples that contain mainly blue CoAl2O4 spinel and next to it also YAlO3 perovskite and Y3Al5O12 garnet phases. The mineralizer LiF promotes the formation of yttrium aluminium double oxides of sandy-yellow to grey–brown colour hue, although the samples also contain small amount of blue CoAl spinel phase. Intensive milling process did not results in CoAl spinel phase and the samples contain yttrium aluminium perovskite and cobalt oxide. Evaluation of Kubelka–Munk absorption as a function of the pigment concentration was found that hiding is complete by adding of 5 mass% of pigment to the ceramic glaze. Resulting colour hue of all pigment applications into ceramic glaze is blue. The size of particles lies in the range of 7–26 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call