Abstract
Due to the complex phase change and heat transfer processes, the mechanisms of cavitation bubble collapse near a rigid boundary are well recognized to be complicated. Based on a modified large-density ratio multi-relaxation-time pseudo-potential lattice Boltzmann model, a single and a dual cavitation bubble collapse process near a rigid boundary with large-density and various viscosity ratios are simulated in the present study. Effects of density ratio, viscosity ratio, initial pressure difference, and distance between the cavitation bubble and wall on the cavitation process are studied. Furthermore, the evolution of maximum pressure, micro-jet velocity, lifetime, deformation index, and the first introduced total kinetic energy of cavitation bubbles are analyzed in the development of cavitation. Simulations show that the interaction mode of the bubbles and the distance between the rigid boundary and the lower bubble are key factors in determining the effect of aeration reduction. The study also shows that the proposed lattice Boltzmann pseudo-potential model is a robust and effective tool for studying the collapse of near-wall cavitation bubbles and has potential to predict the interaction of cavitation bubbles in the presence of complex boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: AIP Advances
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.