Abstract
Stabilizing atmospheric CO2 concentration requires the development of novel methods for capturing it in the form of permanent reservoirs. Among the proposed methods is CO2 storage in the form of hydrate. In this study a method was established for CO2 conversion to hydrate. This method can be applied to bioethanol plants, which produce CO2 as a by-product of ethanol fermentation. In this regard, a tubular recirculating flow reactor was developed for the study of CO2 hydrate formation. The experiments were carried out at 279 K and 3.5–5 MPa to determine the rate of CO2 hydrate formation. Further, a model was developed for prediction of the rate of hydrate formation based on the mass transfer, crystallization, and thermodynamic concepts. The predicted hydrate formation rate was compared to the experimental data in order to validate the model prediction. The predicted results were in good agreement with the experimental data at different operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.