Abstract

AbstractConcrete is one of the most fire‐resistant materials, whose resistance depends on the chemical and structural characteristics of the hydrated calcium silicate (C‐S‐H) formed in the hydration and hardening process. However, the structure and composition of this C‐S‐H varies with the time of hydration. The effect of the composition of the calcium silicate on the anhydrous material formed has been studied after subjecting it to an accelerated study of the effect of fire, irradiating it with a CO2 laser. Changes in the composition of C‐S‐H can lead to changes in the mechanical properties of the cement. C‐S‐H samples with different chemical composition (Ca/Si ratios 1 and 2) as well as different synthesis processes (double decomposition and hydrothermal) were studied. The crystalline phases obtained after heating were identified through micro‐Raman spectroscopy, which confirmed the formation of anhydrous calcium silicates with the same Ca/Si ratio as the initial one. In C‐S‐H gels with a Ca/Si ratio of over 1.5, stable Ca (OH)2 was formed. Scanning electron microscopy/energy dispersive X‐ray analysis analysis determined that in the process of heating with the laser, water is lost fast, generating porous structures. Such porosity is higher in materials with a lower Ca/Si ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.