Abstract
AbstractWe report the results of the complex study of the bulk interior of Bursa L6 ordinary chondrite using optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, electron microprobe analysis (EMPA), X‐ray diffraction (XRD), magnetization measurements, and Mössbauer spectroscopy. The main and minor iron‐bearing phases and their chemical compositions were determined by these techniques. The detected iron‐bearing phases in the bulk interior of Bursa L6 are the following: olivine; orthopyroxene; Ca‐rich clinopyroxene; troilite; chromite; hercynite; ilmenite; the α2‐Fe(Ni, Co), α‐Fe(Ni, Co), and γ‐Fe(Ni, Co) phases; and ferrihydrite resulting from meteorite terrestrial weathering. Using the EMPA, the values of fayalite and ferrosilite were obtained as ~25.2% and ~21.4%, respectively. The unit cell parameters for silicate crystals were determined from XRD, then the Fe2+ and Mg2+ occupations of the M1 and M2 sites in these crystals were estimated. Further calculations of the ratios of the Fe2+ occupancies in the M1 and M2 sites in olivine and orthopyroxene based on XRD and Mössbauer spectroscopy appeared to be in a good agreement. The temperatures of equilibrium cation distributions for olivine and orthopyroxene obtained from these techniques are consistent: 623 K (XRD) and 625 K (Mössbauer spectroscopy) for olivine and 1138 K (XRD) and 1122 K (Mössbauer spectroscopy) for orthopyroxene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.