Abstract

In this paper, numerical simulations of laminar, steady, two-dimensional natural convection flows in a square enclosure with discrete heat sources on the left and bottom walls are presented using a finite-volume method. Two different orientated wall boundary conditions are designed to investigate the natural convection features. The computational results are expressed in the form of streamlines and isothermal lines for Rayleigh numbers ranging from 10 2 to 10 7 in the cavity. In the course of study, a combination of third-order and exponential interpolating profile based on the convective boundedness criterion is proposed and tested against the partially heated cavity flow up to the highest Rayleigh number 10 7. The effects of thermal strength and heating length on the hydrodynamic and thermal fields inside the enclosure are also presented. Numerical results indicate that the average Nusselt number increases as Rayleigh number increases for both cases. Moreover, it is seen that the effect of the heat transfer rate due to the heating strength on the left wall is different from the one on the bottom. For the heater size effect, it is observed that by increasing the length of heat source segment, the heat transfer rate is gradually increased for both cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.