Abstract

This paper uses first-order difference to transform non-smooth data into smooth time series data, determines the p and q parameters in the model by judging the trailing and truncated nature of ACF, PACF, and finally establishes the ARIMA model after ACI, BCI detection. According to the parameters of the neural network randomly selected similar to the initial spatial position of the particles in the particle swarm algorithm, the improved particle swarm algorithm is used instead of the gradient correction method to precisely adjust the parameters and establish the BP neural network, which improves the robustness and accuracy of the prediction model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.