Abstract

The paper describes experiments aimed at setting parameters for an efficient design of new types and shapes of energy dissipators on chutes of dam spillways. During major rainfall events, large water inflows into the reservoir induce a rise in the reservoir level, and a spillway system must be installed to spill safely the flood waters. Two key challenges during the spillway design are conveyance and energy dissipation. Energy dissipation on dam spillways can be achieved by a range of dissipator designs. One type of spillway is a block ramp. Block ramps are hydraulic structures which are often used in practical applications to assure a correct balance between hydraulic functioning and the environmental impact. One of the main peculiarities of this approach is the capacity to dissipate a larger energy amount than other traditional structures. Thus, significant efforts were spent by the scientific community around the world in order to optimize their energy dissipation efficiency. The use of fibre concrete for the design of reinforced block ramps can improve their resistance significantly. The presented experiments describe the boundary condition for the design of new fibre concrete dissipators based on the measurements performed on reinforced block ramps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call