Abstract

The static headspace composition of sunflower oil throughout the oxidation process at 70 degrees C with circulating air is studied by means of solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC-MS); at the same time the liquid phase of the same oil is studied by means of Fourier transform infrared (FTIR) spectroscopy. Each technique provides complementary information about the process; FITR spectroscopy detects changes in the functional groups of the liquid matrix in a global way and SPME/GC-MS provides information about the different components present in the volatile phase during the oxidation process. Concordance between the timing of the changes produced in both liquid and gaseous phases is observed, as well as agreement and complementarity in the results obtained from both phases. The formation of some well-known genotoxic and cytotoxic oxygenated aldehydes in this process and their presence in the oil headspace are proved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call