Abstract

The results of analytical analysis of interfacial bond stress-slip behavior of steel bars embedded in recycled aggregate concrete (RAC) are reported in this paper. Significantly large data from the laboratory pullout tests of specimens were analyzed including the specimens tested by the author. A bond stress-slip constitutive law is proposed for the steel rebars embedded in RAC. The experimental stress–slip responses of specimens were compared with the theoretical predictions. An existing model in the literature was employed for determining the ascending branch of the bond stress–slip curve. Based on the differences in the observed and predicted responses, a modified expression to capture the descending branch of the bond stress–slip curve was proposed. The results of the modified expression correlated well with the observed data of samples tested by the author and those reported in the existing literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.