Abstract
Bohr–Mottelson Hamiltonian on the γ-rigid regime for Q-deformed modified Eckart and three-dimensional harmonic oscillator potentials in the β-collective shape variable was investigated in the presence of minimal length formalism and Q-deformed of the radial momentum part. By introducing new wave function and using the Q-deformed potential concept in Bohr–Mottelson Hamiltonian in the minimal length formalism, the un-normalized wave function and energy spectra equation were obtained by using the hypergeometric method. Meanwhile, the Bohr–Mottelson Hamiltonian in the presence of the quadratic spatial deformation to the momentum in collective shape variable was investigated using transformation of a new variable such as the Schrodinger-like equation with shape invariant potential. The energy equation and un-normalized wave function were obtained using the hypergeometric method. The results showed that the Bohr–Mottelson equations with different energy potentials and different deformation forms in the radial momentum reduced to the similar Schrodinger-like equation with the modified Poschl–Teller potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.