Abstract

A facile, efficient and eco-friendly synthesis of transition nano metal oxides like zinc oxide (ZnO), copper oxide (CuO), tin oxide (SnO) from Persea americana. Mill was executed followed by ex-situ polymerization favoring poly (glycerol succinate) (PGS)/nano metal oxide composite for the first time. The incorporation of nanofillers was confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectrometer (XRD), Scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS). As a comparative approach, the extent of metal dissolution was evaluated in presence of precursor as well as nano dispersed forms for various concentrations (10, 50, 100, 500, 1000 ppm) under the cluster of electrochemical and non-electrochemical techniques. Enhanced inhibition efficiency of 97% was observed in the case of CuO dispersion which was additionally supported by XRD particle size determination. The increase in charge transfer resistance (Rct) and a decrease in corrosion current (Icorr) elicited from electrochemical measurements strictly proved the role of metal – oxide nanoparticles. Further, the mode of inhibitor was found to be predominantly cathodic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.