Abstract

AbstractFor understanding the origin of the improvements of properties in the CIGS-based cells, of which the CIGS absorber has been fabricated by H2O-introduced co-evaporation [CIGS-H2O], band alignment at the interfaces between chemical bath deposited CdS and CIGS-H2O with Ga substitution ratio ~ 40 % has been studied by photoemission and inverse photoemission spectroscopy. The CdS layer over the CIGS-H2O showed an identical electronic structure with that of CdS on the conventionally grown CIGS; band gap energy of 2.3 ~ 2.4 and a location of conduction band minimum (CBM) and valence band maximum (VBM) relative to Fermi level were + 0.75 eV and -1.6 ~ -1.7 eV, respectively. In the interface region, decreases of CBM and a rise of VBM were observed. Total amount of the decrease of CBM over the interface was 0.2 ~ 0.3 eV. XPS measurements of the core-level signals over the interface showed a small upward bend bending of 0.1 ~ 0.2 eV. Consequently, the conduction band offset (CBO) and valence bad offset (VBO) at the CBD-interface over the CIGS-H2O (Ga~40%) are about +0.1, and 0.9 ~ 1.1 eV, respectively. This positive CBO is contrast with a slightly negative CBO at the interface between CBD-CdS/conventionally grown CIGS with Ga ~ 40 % measured previously. These results indicate that the H2O introduction is effective to extend the upper limit of the Ga substitution ratio where the Type-I conduction band alignment is maintained. The observed band alignments are consistent with the rise of Voc and efficiency in the CIGS-H2O based cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call