Abstract
Metal contacts are regarded as key elements of nanometer-scale electronics. Since gold contacts show quantized conductance even at room temperature, much effort has been devoted to understand their conductance behavior on the nanoscale. However, gold contacts do not always show quantized conductance steps during their thinning process, the reason for which has been an open question. Thus, it is necessary to investigate the relationship between the atomic structure and conductance of gold contacts. We developed a custom-made scanning tunneling microscope combined with an ultra-high vacuum transmission electron microscope to clarify the structural dependence of conductance quantization in gold contacts. We found that [111] and [001] gold contacts with a bottleneck shape showed a gradual decrease in conductance with elastic elongation and successive conductance jumps with periodic plastic deformation. In contrast, [110] gold contacts had a hexagonal prism shape (termed gold [110] nanowires). In the conductance histogram, peaks appeared nearly in steps of the quantum unit. We found that the prominent peaks corresponded to stable gold nanowires with a regular hexagonal cross-section. Following first-principles calculations, we confirmed that very thin gold [110] nanowires were ballistic conductors. The conductance behavior differed depending on the contact shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.