Abstract
This paper address the blocking of the electronic conductivity for a BaCe0.8Pr0.2O3-δ (BCP) material due to the addition of a BaCe0.4Zr0.4Y0.2O3-δ (BCZY) thin layer. Barium cerates (BCP and BCZY) show interesting features as electrolytes for Proton Conducting Solid Oxide Fuel Cells (PC-SOFC). BCP perovskite displays good mechanical properties associated to its sintering capability, typically proposed as a possible electrolyte. However, this compound shows poor CO2 tolerance above 500 °C and presents mixed conductivity under wet synthetic air. Protonic transport is the main feature of BCZY perovskite and it presents an excellent CO2 tolerance. However, the drawback of this compound is its high grain boundary resistance. In this work, a BCZY film was grown by Pulsed Laser Deposition (PLD) on BCP in order to block its electronic conductivity and improve CO2 tolerance. From the electrochemical characterization of materials, it is proposed that BCP dominates transport mechanisms on the BCZY/BCP bilayer membranes under wet synthetic air and wet diluted hydrogen. Our measurements confirm that the BCZY film blocks the electronic conductivity of BCP under wet synthetic air and protects it from CO2-containig atmospheres. Due to this set of properties, the BCZY/BCP bilayer membrane represents a possible candidate as electrolyte for PC-SOFC operating between 400 and 600 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.