Abstract

Based on the finite series method, the Gaussian standing or quasi-standing beam is expressed in terms of spherical wave functions and a weighting parameter, which describe the beam shape and location relative to the particle. An expression is derived for the radiation force on a sphere centered on the axis of a Gaussian standing or quasi-standing wave propagating in an ideal fluid. Rigid, fluid, elastic, and viscoelastic spheres immersed in water are treated as examples. In addition, a method is proposed to compute the axial acoustic radiation force when the sphere is translated axially. Results indicate the capability of the proposed method to manipulate and separate spheres based on their mechanical and acoustical properties. The interaction of a Gaussian quasi-standing beam with a sphere can result in periodic axial force under specific operating conditions. The results presented here may provide a theoretical basis for the development of acoustical tweezers in a Gaussian standing beam, which would be useful in micro-fluidic lab-on-chip applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call