Abstract
Copper and nickel impurities in nuclear reactor pressure vessel (RPV) steel can form nano-clusters, which have a strong impact on the ductile–brittle transition temperature of the material. Thus, for control purposes and simulation of long irradiation times, surveillance samples are submitted to enhanced neutron irradiation. In this work, surveillance samples from a Swiss nuclear power plant were investigated by extended X-ray absorption fine structure spectroscopy (EXAFS). The density of Cu and Ni atoms determined in the first and second shells around the absorber is affected by the irradiation and temperature. The comparison of the EXAFS data at Cu and Ni K-edges shows that these elements reside in arrangements similar to bcc Fe. However, the EXAFS analysis reveals local irradiation damage in the form of vacancy fractions, which can be determined with a precision of ∼5%. There are indications that the formation of Cu and Ni clusters differs significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.