Abstract
The initial enzymes and genes involved in the anoxic metabolism of cholesterol were studied in the denitrifying bacterium Sterolibacterium denitrificans Chol-1S(T). The second enzyme of the proposed pathway, cholest-4-en-3-one-Delta1-dehydrogenase (AcmB), was partially purified. Based on amino acid sequence analysis, a gene probe was derived to screen a cosmid library of chromosomal DNA for the acmB gene. A positive clone comprising a 43-kbp DNA insert was sequenced. In addition to the acmB gene, the DNA fragment harbored the acmA gene, which encodes the first enzyme of the pathway, cholesterol dehydrogenase/isomerase. The acmA gene was overexpressed, and the recombinant dehydrogenase/isomerase was purified. This enzyme catalyzes the predicted transformation of cholesterol to cholest-4-en-3-one. S. denitrificans cells grown aerobically with cholesterol exhibited the same pattern of soluble proteins and cell extracts formed the same 14C-labeled products from [14C]cholesterol as cells that were grown under anoxic, denitrifying conditions. This is especially remarkable for the late products that are formed by anaerobic hydroxylation of the cholesterol side chain with water as the oxygen donor. Hence, this facultative anaerobic bacterium may use the anoxic pathway lacking any oxygenase-dependent reaction also under oxic conditions. This confers metabolic flexibility to such facultative anaerobic bacteria.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.