Abstract

Anomalous charge collection efficiency observed in heavily irradiated silicon strip detectors operated at high bias voltages has been studied in terms of a simple model and experimentally using 25 ns shaping electronics and transient current technique (TCT) with edge-on laser injection. The model confirmed qualitatively the explanation by electron impact ionization in the high electric field close to the strips, but failed in the quantitative description of the collected charge. First results on a Hamamatsu strip detector irradiated to 5×10 15 n eq/cm 2 and operated at bias voltages in excess of 1000 V exhibit charge collection similar to what obtained on Micron devices. TCT tests with local charge injection by a laser confirm the validity of a linear extrapolation of trapping to very high fluences and reveal significant charge collection from the non-depleted volume of the detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.