Abstract

Multiple parallel scratches are often analyzed to understand the material removal mechanisms due to abrasion. However, successive scratches with different orientations may represent better the conditions found in machining processes, such as honing and belt finishing. The objective of this work was to analyze the cutting forces and the phenomena of material removal due to abrasion, arising from angular scratches in low carbon steel. Experimental and numerical techniques were considered. In both, analyses considered the presence of an initial set of parallel scratches, followed by a second set of scratches with different orientations (10, 20 or 30°) with respect to the previous one. The cutting action was performed by a tool representing an abrasive particle, which had a cono-spherical geometry with 235 µm tip radius and 30° apex angle. The cutting settings were: 50 m/min scratch velocity and 100 µm depth of cut. In the experimental part, scratches were conducted using a shaper machine tool equipped with a tungsten carbide (WC-Co) stylus. Tests were conducted on a Kistler platform, which allowed force measurement. Surfaces were later analyzed with an optical profilometer. The numerical simulations considered a ductile damage model with element deletion to provide the material removal during the scratches. Experimental and numerical results showed that the angle affects the cutting forces, especially when one scratch crosses a previously scratched region. The 20° case was the most critical, especially in terms of the cutting forces, due to the accentuated material strain-hardening for this condition. Likewise, this fact was corroborated by numerical results, which indicated a higher energy necessary to plastic deformation, and a reduced material removal at 20°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call