Abstract
Static waste heat recovery, by means of thermoelectric generator (TEG) modules, constitutes a fast-growing energy harvesting technology on the way towards greener transportation. Many commercial solutions are already available for small internal combustion engine (ICE) vehicles, whereas further development and cost reductions of TEG devices expand their applicability at higher-power transportation means (i.e., ships and aircrafts). In this light, the integration of waste heat recovery based on TEG modules in a shipboard distribution network is studied in this work. Several voltage step-up techniques are considered, whereas the most suitable ones are assessed via the LTspice simulation platform. The design procedure of the selected LLC resonant converter is presented and analyzed in detail. Furthermore, a flexible control strategy is proposed, capable of either output voltage regulation (constant voltage) or maximum power point tracking (MPPT), according to the application demands. Finally, both simulations and experiments (on a suitable laboratory testbench) are performed. The obtained measurements indicate the high efficiency that can be achieved with the LLC converter for a wide operating area as well as the functionality and adequate performance of the control scheme in both operating conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.