Abstract

An extended interaction oscillator (EIO) generating Terahertz (THz) wave is presented by theoretical study and simulation study in this paper. A rectangular reentrant coupled-cavity is proposed as its slow-wave structure (SWS). The equivalent circuit method (ECM) is adopted to calculate the dispersion relation and circuit parameters of the SWS. The beam-wave interaction of the EIO is theoretically studied in detail, including the beam loading conductance, the conversion efficiency and the optimal gap number. The dependence is investigated of the beam loading conductance and the conversion efficiency on the gap number and the beam velocity. Some properties of the cold circuit are simulated by CST software, including the dispersion relation and the filed distribution. These simulation results agree well with those of ECM. The operating mode of EIO is chosen very close to the βL = 2π point with corresponding frequency about 0.225 THz, when the beam voltage is 13 kV, the current 105 mA, the cavity was designed with the period 0.3 mm, 14-gap, the height 1.6 mm and the width 0.76 mm . Simulation results of beam-wave interaction with PIC codes show that the excited frequency is 0.225 THz and peak output power 44 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.