Abstract
A filament and its channel close to the solar disk were observed in the complete hydrogen Lyman spectrum, and in several EUV lines by the SUMER (Solar Ultraviolet Measurement of Emitted Radiation) and CDS (Coronal Diagnostic Spectrometer) spectrographs on the SoHO satellite, and in Hα by ground-based telescopes during a multi-instrument campaign in May 2005. It was a good opportunity to get an overview of the volume and the density of the cold plasma in the filament channel; these are essential parameters for coronal mass ejections. We found that the width of the filament depends on the wavelength in which the filament is observed (around 15 arcsec in Hα, 30 arcsec in Lα, and 60 arcsec in EUV). In Lα the filament is wider than in Hα because cool plasma, not visible in Hα, is optically thick at the Lα line center, and its presence blocks the coronal emission. We have derived physical plasma properties of this filament fitting the Lyman spectra and Hα profiles by using a 1D isobaric NLTE model. The vertical temperature profile of the filament slab is flat (T≈7000 K) with an increase to ≈ 20 000 K at the top and the bottom of the slab. From an analysis of the Lα and Hα source functions we have concluded that these lines are formed over the whole filament slab. We have estimated the geometrical filling factor in the filament channel. Its low value indicates the presence of multi-threads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.