Abstract
The saving and re-use of energy has acquired great relevance in recent years, being of great importance in the automotive sector. In the literature, it is possible to find different proposals for energy-harvesting damper systems (EHSA)—the electromagnetic damper being a highly recurrent but still poorly defined proposal. This article specifically focuses on studying the concept and feasibility of an electromagnetic suspension system that is capable of recovering energy, using a damper formed by permanent magnets and a system of coils that collect the electromotive force generated by the variation of the magnetic field. To study the feasibility of the system, it is necessary to know the maximum energy that can be recovered through the winding system; however, the difficulties in obtaining the derivative of the magnetic flux and its derivative for each position make the analytical method very tedious. This paper presents an experimental method with which to maximize energy recovery by defining the optimum relative position between magnet and coil.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.