Abstract

An amperometric glucose sensor based on Pd–Ni/SiNW electrode has been investigated. The silicon nanowire (SiNW) electrodes were first fabricated by chemical etching, and then nickel and palladium particles were deposited onto the surfaces of SiNWs via electroless co-plating technique followed by annealing in nitrogen atmosphere at 350 °C for 300 s. The morphology of Pd–Ni/SiNW electrode was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The sensor performance was characterized by cyclic voltammetry (CV) and fixed potential amperometry techniques. In 0.1 M KOH alkaline medium with different glucose concentrations, the sensor shows an excellent sensitivity of 190.72 μA mM −1 cm −2 with the detection limit (S/N ratio = 3) of 2.88 μM. And it also exhibits superior anti-interference properties to the species including ascorbic acid (AA), uric acid (UA) and 4-acetamidophenol (AP). All results demonstrate that this Pd–Ni/SiNW electrode is a candidate with great potential for glucose detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.