Abstract

At temperatures exceeding 480°C titanium alloys generally oxidises and forms a hard and brittle layer enriched with oxygen, which is called alpha case. This layer has negative effects on several mechanical properties and lowers the tensile ductility and the fatigue resistance. Therefore any alpha-case formed on titanium alloys during various manufacturing processes, such as heat treatment procedures, must be removed before the final part is mounted in an engine. In addition, long time exposure at elevated temperatures during operation of an engine could possibly also lead to formation of alpha-case on actual parts, therefore knowledge and understanding of the alpha-case formation and its effect on mechanical properties is important. Factors that contribute for growth of alpha-case are: presence of oxygen, exposure time, temperature and pressure. In the present study, isothermal oxidation experiments in air were performed on forged Ti-6Al-2Sn-4Zr-2Mo at 500°C and 593°C up to 500 hours. Similar studies were also performed on Ti-6Al-4V plate at 593°C and 700°C. Alpha-case depth for both alloys was quantified using metallography techniques and compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call