Abstract
The genesis of mini- and microsatellite loci, which is under extensive study in humans and some other bisexual species, have been virtually overlooked in species with clonal mode of reproduction. Earlier, using multilocus DNA fingerprinting, we have examined variability of some mini- and microsatellite DNA markers in parthenogenetic lizards from the genus Darevskia. In particular, mutant (GATA)n-restrictive DNA fragments were found in Darevskia unisexualis. In the present study, we examined intraspecific polymorphism of three cloned loci of D. unisexualis--Du323, Du215, and Du281--containing (GATA)7GAT(GATA)2, GAT(GATA)9, and (GATA)10TA(GATA) microsatellite clusters, respectively. Different levels of intrapopulation and interpopulation variability of these loci were found. Locus Du281 showed the highest polymorphism--six allelic variants (in the sample of 68 DNA specimens). Three alleles were found for locus Du215. The Du325 locus was electrophoretically invariant. The primers chosen for loci Du323, Du215, and Du281 were also used for PCR analysis of homologous loci in two presumptive parental bisexual species, D. valentini and D. nairensis. The PCR products of the corresponding loci of the parental species had approximately the same size (approximately 200 bp) as their counterparts in D. unisexualis, but the polymorphism levels of the paternal, maternal, and hybrid species were shown to be somewhat different. These data on the structure of the D. unisexualis loci provide a possibility to study genetic diversity in the parthenogenetic species D. unisexualis and other related unisexual and bisexual species of this genus, which can provide new information on the origin of parthenogenetic species and on the phylogenetic relationships in the genus Darevskia. These data can also be used for resolving problems of marking the lizard genome, which is still poorly studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.