Abstract
In this paper, we analyze algorithmic and architectural characteristics of a class of particle filters known as Gaussian Particle Filters (GPFs). GPFs approximate the posterior density of the unknowns with a Gaussian distribution which limits the scope of their applications in comparison with the universally applied sample-importance resampling filters (SIRFs) but allows for their implementation without the classical resampling procedure. Since there is no need for resampling, we propose a modified GPF algorithm that is suitable for parallel hardware realization. Based on the new algorithm, we propose an efficient parallel and pipelined architecture for GPF that is superior to similar architectures for SIRF in the sense that it requires no memories for storing particles and it has very low amount of data exchange through the communication network. We analyze the GPF on the bearings-only tracking problem and the results are compared with results obtained by SIRF in terms of computational complexity, potential throughput, and hardware energy. We consider implementation on FPGAs and we perform detailed comparison of the GPF and SIRF algorithms implemented in different ways on this platform. GPFs that are implemented in parallel pipelined fashion on FPGAs can support higher sampling rates than SIRFs and as such they might be a more suitable candidate for real-time applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.