Abstract

A purely geometric approach has been investigated to reconstruct the Demonstration Fusion Power Reactor (DEMO) plasma boundary for control purposes. The whole plasma boundary is reconstructed by using a deformable template method based on B-splines. The final curve shape is achieved by minimizing the distance between a limited number of estimated and measured (at present provided by an equilibrium code) plasma boundary points along the reflectometer lines of sight. The resulting unconstrained optimization problem is solved by a simulated annealing algorithm. The method is complemented by including the available plasma and poloidal field coil current measurements to refine the boundary reconstruction in the X-point region. The robustness with respect to random measurement random errors and to a reduction in the number of measurements is discussed. The main equilibrium and shape geometric quantities (such as plasma cross-sectional area, plasma center position, elongation, and triangularity) were computed and compared to the corresponding quantities of a DEMO reference equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call