Abstract

Body-centric wireless networks are used for connectivity between on-body and on-off body communications for various applications for rescue, diagnostics and medical usage. Multiple features of modern portable and wearable devices necessitate antenna operation at a number of frequencies. A compact, low profile and multi-band antenna is presented for body-centric wireless networks in this study. The conventional microstrip rectangular patch antenna has been converted into a multi-band antenna by using layers of mercury and liquid crystal polymer (LCP). The antenna performance in free space and in body-mounted configurations are evaluated and compared using computer simulations. The proposed antenna supports six frequencies for operation at ISM/Wi-Fi/C band. A minimal shift in the operating frequencies while operating in on-body configuration makes this the proposed antenna very resilient to frequency de-tuning caused by the human body presence. The antenna also offers high peak gain values (>7.68 dBi) in the two configurations at all of the operating frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call