Abstract

The rectangle core plate of all-steel buckling-restrained braces (BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a novel steel BRB is proposed. In this new-type steel BRB, two T-shaped steels are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. Meanwhile, the ingot-iron material with low yielding strength and high elongation is applied to the steel core to study the mechanical properties of steel BRBs. To validate the theoretical requirements for the width-to-thickness ratio of the steel core and the thickness of angle steel, quasi-static tests of eight specimens were conducted. The tests focused on the energy dissipation capacity and failure modes of the proposed steel BRBs. Nonlinear finite element analysis was also carried out to validate the experimental results. Both the aforementioned results imply that appropriately designed steel BRBs can meet the performance requirements for BRB components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.