Abstract

New quasi-one-dimensional hollow nanostructures similar to flattened nanotubes are numerically simulated. These nanostructures can be obtained by connecting the edges of nanoribbons cut out of twisted bilayer graphene with the Moire angle Θ = 27.8°. The resulting nanotubes are non-chiral and contain chains of topological defects at the connected edges. A detailed description of their structure is given, and their energy stability is also demonstrated. The electronic characteristics of such structures and their evolution in the course of deformation are determined using ab initio methods. All nanotubes under study are metallic, except the structure with a width of 14 A, characterized by the band gap Eg = 0.2 eV. It is shown that the electronic and elastic characteristics of such nanotubes differ significantly from those of nanoribbons forming them and of single-walled carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.