Abstract

A novel railgun configuration with perforated sidewalls is investigated. The motivation for this configuration is the desire to minimize the detrimental effects of inertial and viscous drag at high velocities caused by the debris from the projectile and the gun wall trapped in the plasma armature. By creating perforations on the sidewalls, ablated material is continuously vented out from the railgun bore, minimizing inertial and viscous drag. The test has been done on a 1.2-m-long railgun with a 3.2-mm-diameter bore. Results for hydrogen pellet acceleration show that at high currents the perforated railgun outperforms the unperforated one. Combined with a newly designed cryogenic pellet generator and the first-stage gas gun, a solid hydrogen pellet velocity of 2.46 km/s has been achieved on the 1.2-m railgun.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call