Abstract

The mechanochemical effects of elasticity and plasticity are introduced into a peridynamic (PD) corrosion model. A PD equation that couples the mechanics and kinetics of electrochemistry is proposed for the first time. This clarifies the influence of the mechanical load in governing the occurrence of diffusion during corrosion. The phase changes experienced by a material are used to characterize the movement of the corrosion boundary, and the concentration of material points is used to characterize the degree and extent of damage caused to the chosen metal. Immersion tests and in situ electrochemical tests are carried out, and the results are used to explore the effects of stress and/or load on the kinetics of environment-induced damage to an aluminum alloy. The model predictions are in good agreement with the experimental observations. The results of this study demonstrate that a coupled mechano-electrochemical PD corrosion model can capture corrosion-induced damage and can be used to study damage propagation upon exposure to an aggressive environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.