Abstract

A CPC was obtained by mixing calcium hydrogenphosphate (DCPA: CaHPO(4)) and calcium oxide with either water or sodium phosphate (NaP) buffers. Physical and mechanical properties such as compressive strength (CS), initial (I) and final (F) setting times, cohesion time (T(C)), dough time (T(D)), swelling time (T(S)), dimensional and thermal behavior, injectability (t(100%)), antimicrobial properties, setting reaction kinetics, and powder stability over time were investigated by varying different parameters such as liquid-to-powder (L/P) ratio (0.35 to 0.7 mL g(-1)), molar calcium-to-phosphate (Ca/P) ratio (1.67 to 3), the pH (4, 7 or 9) and the concentration (0 to 1 M) of the NaP buffer. The best results were obtained with the pH 7 NaP buffer at a concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (CS), 6 to 10 min (I), 11 to 15 min (F), 15 to 45 min (T(S)), 3 to 12 min (t(100%)), 16 min (T(D)). This cement expanded during its setting (2.5-7%), and is thus appropriate for tight filling. Finally the cement has antimicrobial activity from Ca/P = 2 and the whole properties were conserved after 8 months storage. Given the mechanical, rheological and antimicrobial properties of this new DCPA/CaO-based cement, its use as root canal sealing or pulp capping material may be considered as similar to calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call