Abstract

A simple three-dimensional time-reversible system of ODEs with quadratic nonlinearities is considered in a recent paper by Sprott (2014). The author finds in this system, that has no equilibria, the coexistence of a strange attractor and invariant tori. The goal of this letter is to justify theoretically the existence of infinite invariant tori and chaotic attractors. For this purpose we embed the original system in a one-parameter family of reversible systems. This allows to demonstrate the presence of a Hopf-zero bifurcation that implies the birth of an elliptic periodic orbit. Thus, the application of the KAM theory guarantees the existence of an extremely complex dynamics with periodic, quasiperiodic and chaotic motions. Our theoretical study is complemented with some numerical results. Several bifurcation diagrams make clear the rich dynamics organized around a so-called noose bifurcation where, among other scenarios, cascades of period-doubling bifurcations also originate chaotic attractors. Moreover, a cross section and other numerical simulations are also presented to illustrate the KAM dynamics exhibited by this system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.