Abstract

Improving the safety and performance of lithium ion batteries (LIB) sparked the idea of using a solid electrolyte to construct all-solid-state ones. In this study, a composite solid polymer electrolyte based on Li6.40La3Zr1.40Ta0.60O12 (LLZTO) nanoparticles and a random copolymer, poly(vinyl pyrrolidone-co-poly(oligo(ethylene oxide) methyl ether methacrylate) (PPO), was successfully prepared and investigated in detail. The copolymer PPO is mixed with LiTFSI and LLZTO at different ratios and the Li conductivity and other electrochemical properties were studied. The copolymer matrix shows the highest ionic conductivity, 2.43 × 10−5 S/cm at 60 °C, at the content of 20 wt% LiTFSI, the highest lithium ion transference number is determined to be 0.33 at room temperature, and the electrochemical stability reaches 4.3 V vs. Li+/Li. Interestingly, when compounded with LLZTO nanoparticles, the ionic conductivity is not improved much. For example, the highest ionic conductivity increases a little to 2.74 × 10−5 S/cm at 60 °C when 5 wt% LLZTO is added. However, a large increase in electrochemical stability to 5.0 V is obtained for the sample of PPO-20%-10LLZTO. Both PPO and the composite electrolyte show good cycling performance during a plating/stripping experiment at a current density of 0.01 mA/cm2. The limited improvement of properties is possibly due to the poor interface contact between PPO and LLZTO nanoparticles. The result may shed light on the complexity of fabricating composite electrolytes using mixtures of polymer and lithium-conducting ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call