Abstract

Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call