Abstract

Silicon carbide presents electrical properties suitable for many applications especially for high voltage devices. 6H–SiC P +NN + structures have been fabricated following ISE software simulations in order to block voltages as high as 1.5 kV. In particular, these diodes are realized by surrounding the emitter by a p-type region called junction termination extension (JTE). Electrical characterizations under reverse bias at room temperature and in various environments (air, silicone oil) show a premature breakdown for the protected diodes. This breakdown is localized at the emitter periphery. Optical beam induced current (OBIC) measurements show a peak of photocurrent at the junction edge, indicating the presence of a high electric field. These results show a protection efficiency of 60% of the JTE. An electrical activation of the aluminum dopants implanted in the JTE around 30% is derived from the analysis of the presented results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.