Abstract

At present, the existing approaches to production of artificial isotopes are mostly based on the development experience from previous years. This work aims to develop an algorithm for selecting the most effective irradiation modes for target materials. The study is based on sequential modeling of irradiation of target isotopes by neutrons of different ‘single-group’ fluxes at the same neutron flux density within each energy group (BNAB-93). In this study, a flux density equal to 2×1015 n/(cm2×s) was used for each energy group. This approach will help ‘designing’ and selecting the actual neutron spectrum that has the highest efficiency compared to alternatives. The study modelled Co-60 and Lu-177g production for each energy group. The kinetics was analyzed in the most efficient groups in terms of specific activity. The maximum specific activity for Co-60 is reached in group 17 and is equal to 1 kCi/g. For the scheme of Lu-177g production through Lu-176 the maximum specific activity is reached in group 26 and is equal to 58.5 kCi/g. For the scheme of Lu-177g production through Yb-176, the maximum specific activity is reached in group 17 and is equal to 260 Ci/g, advantageous for production are groups 15–17 and 26.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call