Abstract

The study of damage mechanisms for wind turbine blades is important. Generally, modal localization tends to accelerate structural damage. This is a new approach to studying these damage mechanisms for wind turbine blades through modal localization theory. Therefore, this paper investigates whether modal localization phenomena exist in wind turbine blades, as well as the impact of different forms of detuning on modal localization. Based on perturbation theory, a mechanism for mode localization is described quantitatively using the degree of detuning, the degree of mode density, and the mode assurance criterion. A finite element model for wind turbine blades was established using ANSYS software (R15.0), and three detuning cases were simulated by changing the density, elastic modulus, and installation angles of the blades. Moreover, an improved mode localization factor is proposed to quantitatively evaluate the degree of mode localization in wind turbine blades. The numerical results indicate that the degree of modal localization increases with an increasing degree of detuning, but the increase in modal localization gradually slows. Finally, the detuning modal shape composition, which includes harmonic components, is analyzed. The results show that the closer the composition of the detuning modes is, the stronger the degree of mode localization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call