Abstract

A combined treatment using both low-frequency (20 kHz) and high-frequency ultrasounds (1.63 MHz) is a promising new process to stabilize emulsions with minimalist formulation. In order to optimize process parameters, a Doehlert experimental design was performed with oil-in-water emulsions, presently used for cosmetic products, composed of water, caprylic/capric triglycerides and oleic acid. Effects of treatment time, oil content and oleic acid content were studied on emulsion properties (droplet size, polydispersity index, ζ-potential and yield of oil incorporation) and on emulsion stability after a 28-day storage (creaming index, Turbiscan stability index (TSI) and oil release). From experimental data, a model was established that allowed to study effects of each parameter and their interactions on emulsion formation and stability. Oleic acid content had a great impact on emulsion formation: It reduced droplet size, PDI and ζ-potential and increased yield of oil incorporation. However, a critical value could be highlighted, beyond which oleic acid effects reversed. Treatment time had an important beneficial effect on emulsion stability as it decreased creaming index, TSI and oil release after 28 days of storage. Oil content had a negative effect on emulsion formation and on emulsion stability. However, treatment time and oil content often had a beneficial synergistic effect. The optimized conditions for emulsion processing were obtained through a desirability approach. They were experimentally validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call